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Abstract

The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV)

method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured

triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further

subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions.

Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial

approximation in the SV. Each CV is then updated independently with a Godunov-type finite

volume method and a high-order Runge-Kutta time integration scheme. A universal

reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The

convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based

on the Lebesgue constant has been developed and used successfully to determine the quality of

various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been

obtained, and many different types of partitions have been evaluated. The SV method is tested for

both linear and non-linear model problems with and without discontinuities.
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1. Introduction

We continue the development of the spectral (finite) volume (SV) method for hyperbolic

conservation laws on unstructured grids following the one-dimensional framework presented in

[38]. We wish to pursue a numerical method for conservation laws which has all of the following

properties: a) conservative, b) high-order accuracy, i.e., the order of accuracy is greater than

second order, c) geometrically flexible, i.e., applicable for unstructured grids, and d)

computationally efficient. The SV method is developed to hopefully satisfy these four

requirements, in a relative sense with respect to the current state-of-the-art numerical methods

such as the high-order k-exact finite volume (FV) method [5,16], essentially non-oscillatory

(ENO) method [1,10,19], and weighted ENO (WENO) method [3,17,20,22,27], and the

discontinuous Galerkin (DG) method [2,6,12-14], amongst many others.

One of the most successful algorithms for conservation laws is the Godunov method [18], which

laid a solid foundation for the development of modem upwind schemes including MUSCL [36],

PPM [15], ENO [19] and WENO schemes [22,27]. There are two key components in a Godunov-

type method. One is data reconstruction, and the other is the Riemann solver. The original

Godunov scheme employed a piece-wise constant data reconstruction, and the exact Riemann

solver, and the resultant scheme was only first-order accurate. Later on, higher-order polynomial

reconstructions are used to replace the piece-wise constant reconstruction, and approximate and

more efficient Riemann solvers [21,25,29,31,35,37] were employed to substitute the exact

Riemann solver. In addition, limiters were also introduced to remove spurious numerical

oscillations near steep gradients [36] in higher than first-order Godunov method.

Although Godunov-type methods were originally developed for structured grids, they have been

successfully extended to unstructured grids, thus achieving greater geometric flexibility. Most of

the unstructured grid methods are second-order accurate because they are relatively easy to



implement,andarequite memoryefficient.Severalhigh-orderschemeshavebeendevelopedfor

unstructuredgrids.For example,a high-orderk-exact finite volume schemewasdevelopedby

Barth andFredericksonin [5]. An ENO schemefor unstructuredgrid wasdevelopedby Abgrall

in [1]. Two WENO schemesfor unstructuredgrids weredevelopedby Friedrich in [17], andHu

and Shu in [20]. Although high-order accuratefinite volume schemescan be obtained

theoreticallyfor anunstructuredgrid by usinghigh-orderpolynomialdatareconstructions,higher

than linearreconstructionsarerarelyusedin threedimensionsin practice.This is mainlybecause

of the difficulty in finding valid high-order(non-singular)stencils,and the enormousmemory

requiredto storethecoefficientsusedin thereconstruction.In a k-exactfinite volume method,

eachcontrol volumehasa differentreconstructionstencil.Therefore,a datareconstructionmust

be performedat eachiteration for eachcontrol volume. This reconstructionstepis the most

memoryandtimeconsumingin higherthansecond-orderschemes.In a recentimplementationof

a third-order FV scheme with a quadratic reconstruction in three dimensions by Delanaye and

Liu [16], the average size of the reconstruction stencils is about 50-70. Still there are many

singular reconstruction stencils. The size of the reconstruction stencils usually increases non-

linearly with the order of accuracy. For a fourth order FV scheme, the average stencil size is

estimated to be at least 120. It is very memory and CPU intensive to perform the reconstruction.

More recently, another high-order conservative algorithm called the Discontinuous Galerkin

method was developed by Cockbum, Shu, et al in a series of papers [12-14] and also [2, 6] on

unstructured grids. In the DG method, a high-order data distribution is assumed for each element.

As a result, the state variable is usually not continuous across element boundaries. The fluxes

through the element boundaries are computed using an approximate Riemann solver, similar to

FV methods. The residual is then minimized with a Galerkin approach. Due to the use of

Riemann fluxes cross element boundaries, the DG method is fully conservative. A disadvantage

of the DG method is that high-order surface and volume integrals are necessary, which can be

expensive to compute. Another high-order conservative scheme for unstructured quadrilateral



grids is the multi-domain spectral method on a staggered grid developed by Kopriva et al [23-

24]. The multi-domain spectral method is similar to the spectral element method by Patera [30],

which is not conservative. Other related methods include cell-average based spectral method [9]

and spectral element type method [34]. Although very high-order of accuracy was achievable

with these methods, the methods are difficult to extend to other cell types such as triangles, or

tetrahedral cells.

In [38], the first paper in the series, a new conservative high-order SV method is developed for

conservation laws on one-dimensional unstructured grids. Through the use of spectral volumes

(SVs) and control volumes (CVs), the method is not only conservative, but very efficient as well.

In this paper, we extend the SV method to two dimensions. In the next section, we first review

the basic framework of the SV method on triangular grids. In addition, we present a TVD Runge-

Kutta time integration scheme. In Section 3, the reconstruction problem based on CV-averaged

solutions is studied, and it is shown that the reconstruction problems on all triangles with a

similar partition are identical. In Section 4, convergent reconstructions for high-order SV

schemes are discussed, and the partition of a SV is shown to affect the convergence of the

method. Section 5 discusses issues related to discontinuity-capturing and several TVD and TVB

limiters are presented. In Section 6, numerical implementations of the SV method for both linear

and non-linear scalar conservation laws are carried out, and accuracy studies are performed for

both linear and non-linear wave equations to verify the numerical order of accuracy. The shock-

capturing capability of the method is also demonstrated with the Burger's equation. Finally,

conclusions and recommendations for further investigations are summarized in Section 7.

2. Review of the Spectral Volume Method

Consider the following multi-dimensional scalar conservation law:
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Ou(x, y,t) Of (u(x, y,t)) Og(u(x, y,t))
+ + -0 (2.1a)

at Ox Oy

R eon domain _2 × [0, T] and _2 c with the following initial condition

u(x, y,O) = Uo(X, y) , (2.1b)

and appropriate boundary conditions on O_. In (2.1), x and y are the Cartesian coordinates and

(x,y)_ _, t_ [0,T] denotes time, u is a state variable and f and g are fluxes in x and y

directions, respectively. Domain £2 is discretized into I non-overlapping triangular cells. In a k-

exact FV method, a data reconstruction is performed for each cell using data from a collection of

neighboring cells, collectively known as a reconstruction stencil as shown in Figure la. A unique

flux through each face is then computed given the reconstructed state variables at both sides of

the face using either an exact or approximate Riemann solver. A summation of fluxes through all

the faces of a cell is then used to update the cell-averaged state variable.

In the SV method, the triangular cells are called spectral volumes, denoted by Si, which are

further partitioned into subcells named control volumes (CVs), denoted by Cij. Volume-averaged

state variables on the CVs are used to reconstruct a high-order polynomial inside the SV. To

represent the solution as a polynomial of degree m in 2D, we need N = (m+l)(m+2)/2 pieces of

independent information, or degrees of freedom (DOFs). The DOFs in a SV method are the

volume-averaged mean variables at the N CVs. For example, a SV supporting a quadratic data

reconstruction is shown in Figure lb. Other candidate partitions for linear to cubic SVs are

shown in Figures 2-4. The number of CVs in Figures 2-4 is the minimum required for these

polynomial reconstructions. Other CV subdivisions are definitely possible. Integrating (2.1) on

C_.j, we obtain

_U

f +
C i OC,.j

(2.2)



whereF = (f g), and n is the unit outward normal of 0C_4, the boundary of Ci,j. Define the CV-

averaged state variable for Cij as

IudV
C, j

u_,j- _,j , (2.3)

where Vi,2 is the volume (area in 2D) of CIj. Then (2.2) becomes

d-_,,Jdt_--,/1 _ f (F* n)dA=O, (2.4)
vi,j r=l Ar

where K is the total number of faces in C@ and Ar represents the r-th face of C@ The surface

integration on each face can be performed with a k-th order accurate Gauss quadrature formula

(k=m+l) , i.e.

J

I(F .n)da= ZWrqr(U(Xrq Yrq))OnrAr +o(a,h_), (2.5)
Ar q=l

where J = integer[(k+l)/2] is the number of quadrature points on the r-th face and, W,q are the

Gauss quadrature weights, (Xrq, y_q) are the Gauss quadrature points, h is the maximum edge

length of all the CVs. Time t is omitted whenever there is no confusion. If F = constant, the

following identity exists:

K

_. f ( F • n)dA = O. (2.6)
r=l Ar

Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the

faces of Ci0, i.e.,

K K J

_,_ I(F . n)da= Z 2 w,qF(u(Xrq, yrq))" n,A_ + O(A_h'+'). (2.7)
r=l Ar r=l q=l

Since O(Vi) = O(Arh), we therefore have

1 K 1 K J

V_)Z_(Fon)dA=_i.j r_12wrqF(.(Xrq, yrq))°nrA r +O(hk). (2.8)
, r=l Ar ' ' = q=I
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Now assume a multi-dimensional polynomial in x and y of order at most k - 1 exists on Si which

is a k-th order approximation to the state variable, i.e.,

p_ (x, y) = u(x, y) + O(h k ), (x, y) _ S_. (2.9)

With the polynomial distribution on each SV, the state variable is most likely discontinuous

across the SV boundaries, unless the state variable is a polynomial of order k - I or less.

Therefore, the flux integration involves two discontinuous state variables just to the left and right

of a face of the SV boundary. This flux integration is carried out using an exact Riemann solver

or one of the Lipschitz continuous approximate Riemann solvers or flux splitting procedures, i.e.,

F(u(Xrq, Yrq)) "nr = FRiem(Pi (Xrq, Yrq),Pi,r (Xrq, Yrq),nr ) + O(Pi (Xrq, Yrq) - Pi, r(Xrq, Yrq))" (2.10)

Here Pi,r is the reconstruction polynomial of a neighboring CV C_j,r, which shares the face Ar

with Cij. Both Pi and Pi,r are k-th order approximations of the exact state variable, i.e.,

Pi (xrq, Yrq ) = U(Xr,_' Yrq) + O(h _), (2.1 la)

Pi,r(Xrq, Yrq) = U(Xrq, Yrq) + O( hk )" (2.1 lb)

Therefore

F(u(xro, Yrq )) " nr = FRi_,,,(Pi(Xro, Yro )' P,.r(xrq ' Yro )' nr ) + O(hk )" (2.12)

Substituting (2.12) into (2.4), we obtain

J

f(Fon)dA= _WrqF_e,n(p,(X_q,y_q),p,._(Xq,Yro),n_)A _ +O(Arhk). (2.13)
A_ q=l

Summarizing (2.4)-(2.13), we obtain the following semi-discrete, k-th order accurate scheme on

Cij for the conservation law (2.1)

+ EwqFe,_,,,(p,(x_q,y_a),p,._(x_q,y_),n_)A_=O(hk). (2.14)
• = q=l

For time integration, we will use the third-order TVD Runge-Kutta scheme from [32]. We first

rewrite (2.14) in a concise ODE form

d.___= Rh (fi-), (2.15a)
dt



where

and

Ul,I

i= u--,,, ,
..,

l u-,N

=

Ru (i)

...

R,,j (i)
...

RI, N (i)

1 K J

R,4 - Vi.j Zr=lZq=lwrqFR'_m(P'(Xrq' y'q)' Pc'(Xrq' Yrq)'nr)A_"

Then the third-order TVD Runge-Kutta scheme can be expressed as:

i(1) = y n + AtR h (i n ) ;

(2.15b)

(2.15c)

i(2) 3 in + 1 [if(1) + AtRh(i(1))]; (2.16)--3 3-

--n+l 1 -n
H = -- U

3 + 2[i(2) + AtRh (_(2))].

The SV method idea can of course be easily extended to other cell types such as quadrilaterals,

tetrahedra, hexahedra, prisms, etc. For cell types other than triangles and tetrahedra, it seems

symmetric CV subdivisions with the minimum number of CVs for a given order of accuracy are

difficult to obtain. The development of the SV method for other cell types will be reported

elsewhere.

3. The Reconstruction Problem in A Spectral Volume

As discussed in the previous section, in order to compute the flux across a surface, one needs to

evaluate the state variable u at quadrature points. These evaluations can be achieved by

reconstructing the state variable u in terms of some basis functions using the CV-averaged

solutions V j within a SV. (For simplicity, we drop the subscript i and use _j, C j and Vy to

denote g_,j, Ci, j and Vi, j, respectively.) In general, one can choose any linearly independent



functionsasthebasisfunctions.Herewe focusonly on the reconstructionusingpolynomialsas

thebasisfunctions.

Let Pm denote the space of degree-m polynomials in two dimensions. Then the dimension of the

approximation space is

m+2] (m +l)(m+2)
gm _

2 2 '

which is the minimum dimension of the space that allows Pm to be complete. In order to

reconstruct u in P,,, we need to partition the SV into a set of Nm nonoverlapping CVs. Let S

denote the physical space of a SV and F[,,, denote the partition, i.e.,

nm ={c,,c2,.-.,Q },

where Cj c S, j = 1,2,..., N m (or N if there is no confusion) is the j-th CV inside the SV, and

N,.

s=Uc,.
2=1

The reconstruction problem reads: Given a continuous function in S, u_ C(S) (the space of

continuous functions in S), and a partition I-Im of S, find p,,, _ Pm, such that

Ic pm(X' y)dV = Ic u(x, y)dV, j= l,..',U m. (3.1)
,j ,J

To actually solve the reconstruction problem, we introduce the complete polynomial basis,

e t (x, y) _ Pro, where Pm ---span{et (x, y) }i_'7• Therefore p,,, can be expressed as

N m

P,, = E alel (X, y), (3.2a)
/=1

or in the matrix form

p,, = e a, (3.2b)

where e is the basis function vector [e_ ..... eu] and a is the reconstruction coefficient vector

[a I ..... aN ]r. Substituting (3.2a) into (3.1), we then obtain

1 N,.

Vii] "_," = ,J

Let _- denote the column vector [_,_ ,..-,u,N ]r, Eq. (3.3) can be rewritten in the matrix form

9



R a= Y,

where the reconstruction matrix

±f,
gl C'I

R=
1

el(x,y)d V ... If eN(x,y) d V

• .. _,e N (x, y) dV

(3.4)

(3.5)

The reconstruction coefficients a can be solved as

a = R-1V, (3.6)

provided that the reconstruction matrix R is nonsingular. Substituting Eq. (3.6) into Eq. (3.2),

Pm is then expressed in terms of cardinal basis functions or shape functions L = [L 1..... L v ]

Net

Pm = E Lj(x' Y)ff 4 = LE. (3.7)
j=l

Here L is defined as

L - eR -1. (3.8)

Equation (3.7) gives the functional representation of the state variable u within the SV. The

function value of u at a quadrature point or any point (Xrq, Yro ) within the SV is thus simply

N m

P,,, (Xxq' Y,q ) = _.a Lj (Xrq, y,.q ) i-gj. (3.9)
j=l

The above equation can be viewed as an interpolation of a function value at a point using a set of

cell averaged values with each weight equal to the corresponding cardinal basis functional value

evaluated at that point.

Note that once the polynomial basis functions e_ are chosen, the cardinal basis functions Lj are

solely determined by the partition FI m of S. The shape and the partition of S, in general, can be

arbitrary as long as the reconstruction matrix R is nonsingular. However, different shapes of

spectral volumes can result in the same expression of the cardinal basis functions (in terms of a

few geometric parameters) if a geometrically similar partition can be applied to them. In the

following, we shall examine a special case that all SVs are triangular and all CVs are polygons

with straight edges. In this case, even though the shapes of the SVs may all be different, as long

10



asthey arepartitionedin a geometricallysimilar manner,they all havethe samereconstruction,

in which thefunctionalvaluesof thecardinalbasesat similargrid pointsareall exactlythesame.

We shalldeferthe discussionof othertype of spectralvolumes(e.g.,quadrilateral,tetrahedron,

curvedboundaries,etc.)elsewhere.

We first considera transformation _:S--_ D, shown in Figure 5a, which transforms an

arbitrary triangle S to a right triangle D. Another often-used transformation is from an arbitrary

triangle to an equilateral triangle E, shown in Figure 5b. Let us use (x,y) to denote the

coordinates in S and (_,r/) the coordinates in D. For simplicity, we assume one of the nodes is

located at the origin r0 =(0,0) and the other two at r_ =(x_,yj) and r, =(x2,y2) in S,

corresponding to (0,0), (1,0) and (0,1) in D, respectively. Thus, the transformation can be written

as

_ _>0,r/20,
: r = rl_ + r_rj, (3.10)

and_ + 7/< 1.

Since the transformation is linear, for a complete set of basis functions e(x,y)_ Pro, one can

easily show that

e(x,y) =e(_,_) T. (3.11)

Here T is the transformation matrix containing only the geometric information of the nodal

positions of S. For example, if e(x, y) = [1, x, y, x 2 , xy, y2 ], then

One can also show that

T

-1 0 0 0 0 0

0 x I Yl 0 0 0

0 x 2 Y2 0 0 0

0 0 0 x_ xly I y(

0 0 0 2x_x 2 xlY 2+x2y _ 2y_y 2

0 0 0 x_ x2y2 y_

dV = dxdy = 2Vd_ dr], (3.12)

where V = _]r_ x r: I is the volume of S. Substituting Eqs. (3.1 I) and (3.12) into Eq. (3.8), we

obtain

11



r = [ei (_, r/),..., e N (_, r/)]| i ... "

V,I

2V

VN

2V

(3.13)

From the above equation, the cardinal basis functions can be made independent of the nodal

positions of S if each and every V,j is proportional to V. This can be achieved by subdividing the

SV into polygonal CVs with straight edges. Therefore, different shapes of triangles have the

identical cardinal bases Lj(_,rl) in the transformed space D if they are similarly partitioned into

polygons. Transforming back to the physical space S, although the functions Lj(x, y) may be

different for different triangles, their functional values Lj(Xrq, Yrq) at similar points (points

having the same (_,r/) in the transformed space D) are exactly the same. We thus have a

universal reconstruction formula, Eq. (3.9), for evaluating the state variable u at similar points.

This also implies that the reconstruction needs to be carried out only once, and that can be

performed using any shape of triangle. Although matrix R may be ill-conditioned, we avoid

numerically inverting the matrix by using Mathematica [39] to derive the reconstruction

coefficients analytically using exact arithmetic. These coefficients are identical for all triangles.

The exact integrations of polynomials over arbitrary polygons can be found in [28].

Note that one of the subtle differences between a FV method and a SV method is that all the CVs

in a SV use the same data reconstruction. As a result, it is not necessary to use a Riemann flux or

flux splitting for the interior boundaries between the CVs inside a particular SV because the state

variable is continuous across the interior CV boundaries. Riemann fluxes are only necessary at

the boundaries of the SV. The most significant advantage of the SV method, as compared with the

FV method, is that the reconstruction for a particular cell type (e.g. triangles) with a certain CV

subdivision (e.g. those shown in Figures 2-4) is exactly the same. Therefore, the memory and

CPU intensive reconstructions used in a FV method are solved analytically without taking any

12



extra memory in the SV method. Furthermore, exact fluxes rather than Riemann fluxes are used

at the interior boundaries of the CVs, resulting again significant savings because the Riemann

flux is usually several time more expensive to compute than the exact flux.

4. Convergent Linear, Quadratic and Cubic Triangular Spectral Volumes

Based on the discussions in the last section, it is clear that the reconstruction problem is

equivalent for all triangles. We therefore focus our attention on the reconstruction problem in an

equilateral triangle E, as shown in Figure 5b. In partitioning E into N non-overlapping CVs, we

further require that the CVs satisfy the following three conditions:

1. The CVs are "symmetric" with respect to all symmetries of the triangle;

2. All CVs are convex;

3. All CVs have straight sides, i.e., the CVs are polygons.

We believe the symmetry and convexity requirement is important for achieving the best possible

accuracy and robustness. The requirement of polygons simplifies the formulation of the SV

method. To handle curved boundaries, isoparametric SVs will be used. The curved boundary will

be represented using high-order polynomials compatible with the polynomial interpolation inside

the SV. Then the isoparametric SVs will be transformed to the standard triangle, which will be

partitioned in the usual manner. Surface integrals will be performed with respect to the standard

triangle. It is obvious that a CV containing the centroid of E must be symmetric with respect to

the three edges and vertices, and at most one such CV can exist. This CV, if it exists, is thus said

to possess degree 1 symmetry (or 1 symmetry, in short). Similarly, CVs with degree 3 and 6

symmetries can also be defined. For example, if a CV is said to possess degree 3 symmetry, then

two other symmetric CVs must exist in the same partition. We shall denote nl, n3 and n6 the

number of degree 1, 3 and 6 symmetry groups in a partition with nl = 0 or 1. Then the total

number of CVs in the partition is then nl + 3n3 + 6n6. In order to support the unique

reconstruction of a degree m polynomial, the total number of CVs must be identical to the

dimension of the polynomial space, i.e.,

13



(m + l)(m + 2)
n l+3n 3+6n 6 = (4.1)

2

The solutions of (4.1) can be used to guide the partition of E once m is given. For example, for m

= 1, ..., 5, all possible solutions are summarized in Table 4.1. Some possible partitions of the

standard triangle corresponding to these solutions for m = 1, 2, 3 are shown in Figures 2-4. Next

the question of how these partitions perform in a data reconstruction needs to be answered.

Given any partition, the reconstruction matrix R in (3.5) must be non-singular. In this case, the

expansion coefficients can be solved from (3.6). Note that once the polynomial basis is given, the

matrix is solely determined by the partition I-[ m of E. For a linear reconstruction using three

CVs, it is well known that the reconstruction is non-singular as long as the centroids of the CVs

are not co-linear. Unfortunately no such simple criteria are known for higher order

reconstructions in E. We will therefore have to compute the determinant of the reconstruction

matrix to determine whether it is singular. As a matter of fact, straightforward computations

indicated that several partitions shown in Figures 3 and 4 are singular. For example, the

quadratic SV in Figure 3b and the cubic SV in Figure 4d are verified to be singular, and they will

be excluded from further considerations.

In [38], the first paper on the SV method, it was shown that not all non-singular reconstructions

are convergent. For example, high-order polynomial reconstructions based on equidistant CVs in

one dimension are not convergent although the reconstructions are non-singular. We believe this

is the direct consequence of the Runge phenomenon. Therefore some means to quantify the

quality of the reconstructions needs to be identified.

Assume we have a non-singular partition I-I m of E. For u _ C(E), we then have

N

p,, (_,r/)= _ Lj (_,r/) ffj. (4.2)
j=l

The cardinal basis function has the following property

1
Ic Ls(_,_7)d_dT? = (5,4, 1 < i,j <_ N.

gj ,i

(4.3)

14



Denote Pm = l-'II(//)' where Fn is an operator which maps C(E) onto P_,(E). It is obvious that

F n is a linear projection operator because:

• Fri(U+v)=Fri(u)+Fn(v),VueC(E),vEC(E )

• Fri(CU) = cFri (u) for any real constant c;

• Fnp = p for pc P_.

When both spaces 6"(E) and Pro(E) are equipped with the supremum or uniform norm, i.e.,

I1"11= II'L= maxl'l' the normof this projection operator can be defined as

Fr/ = sup FrIU (4.4)
._0 ,,If

Because _j <_114J=l, ..,N, then it is obvious that

u II

Therefore we can easily see that

<- u <- u (4.5)
N

FrI = maxj_lCeE = Lj(_,r?) .
(4.6)

The function A,(_,r/)=_Lj(_,r/) is usually referred to as the Lebesgue function of the
j=l

interpolation, and IIrHIIis called the Lebesgue constant, which is of interest for the following two

reasons [8]:

(i) If p,_ is the best uniform approximation to u on E, then

U-In,, < 0 + Fn )u- P2, (4.7)

because

- rH. = - p2 - (rn,, - Pro)= U--Pm--rn (. - pm

For p _ P,,,

< Fri max if j,
P -- ]I<j<N

(4.8)

(ii)
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which is obvious from (4.2). Thus Fnl I gives a simple method of bounding the interpolation

polynomial. It is obvious from (4.7) that the smaller the Lebesgue constant, the better the

interpolation polynomial is to be expected. Therefore the problem becomes finding the partition

with small Lebesgue constant, if not as small as possible. In this paper, our focus is to construct

good enough SV partitions so that the interpolation polynomial is convergent when the

computational grid is refined. The Lebesgue constant is used as the criterion to judge the quality

of the partitions. The optimization of the partitions will be the subject of a future publication.

The problem of partitioning the equilateral triangle E into N symmetric CVs, which can support

non-singular polynomial interpolations is not trivial, and is much more complex than the

problem of determining a set of points in E which support Lagrange interpolations [8,11]. What

we try to accomplish in the paper is to identify partitions of E which support linear to cubic

reconstructions with relatively small Lebesgue constants.

Linear Spectral Volume (m = 1)

Based on the solution of (4.1), it is obvious that two partitions are possible, as shown in Figure

2a and 2b, which are named Type 1 and Type 2 partitions. Since the centroids of the CVs are

non-co-linear, both partitions are admissible. Note that the CVs in both partitions possess a

degree 3 symmetry. The cardinal basis functions Lj(_,r/) are plotted in Figure 6 for both the

Type 1 and Type 2 partitions, respectively. Furthermore, the Lebesgue constants are 13/3

(4.3333) and 43/15 (2.8667) for Type 1 and 2 partitions, respectively. Note that the Type 2 SV

has a much smaller Lebesgue constant than the Type 1 SV, indicating that the Loo error with the

Type 2 SV should be smaller than the error with the Type 1 SV.

For a linear reconstruction, only one Gauss quadrature point is required for a surface integral.

This quadrature point is located at the center of an edge. Due to the symmetry, we therefore only

need to compute and store the functional values of the cardinal bases at two quadrature points,

total of six coefficients. These coefficients are the same for all triangles with similar partitions.
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Quadratic Spectral Volume (m = 2)

Eq. (4.1) has two solutions for m = 2, and the possible partitions are shown in Figure 3. As

mentioned earlier, the partition shown in Figure 3b is singular, and is therefore not admissible.

The partition presented in Figure 3a is not unique in the sense that the position of one of the two

vertices on an edge of the triangle can change, i.e., the length d shown in Figure 3a can be any

real number in (0, 0.5) assuming the length of the edge is 1. It seems that with any d, the partition

is admissible. In our numerical studies, two different values of d were tested, namely d = 1/3 and

d = 1/4 (corresponding to the Gauss-Lobatto points on the edge), which are called Type 1 and

Type 2 partitions, respectively. The Lebesgue constant for the Type 1 partition is 9.3333, and for

the Type 2 partition is 8. Therefore, the Type 2 partition is expected to yield more accurate

numerical results. The cardinal basis functions Li(_,rl) are plotted in Figure 7 for the Type 2

partition. For a quadratic reconstruction, two Gauss quadrature points are required for a surface

integral. Due to the symmetry, there are 30 coefficients, corresponding the functional values of

the cardinal bases at five quadrature points, which need to be computed and stored.

Cubic Spectral Volume (m = 3)

Eq. (4.1) has two different solutions for m = 3, and several possible partitions are shown in

Figure 4. As mentioned earlier, the partition shown in Figure 4d is singular, and is not

admissible. Although the partitions presented in Figure 4a-4c look quite different, the first two

partitions can be viewed as the limiting cases of the partition shown in Figure 4c. Therefore we

can claim that all three partitions 4a-4c have the same general topology. The partition requires

the locations of three vertices I, II and Ill as shown in Figure 4c. The optimization of these points

will be the topic of a future paper. In this paper, our focus is the partition shown in Figure 4b, in

which one parameter d can be changed to obtain different partitions. In fact, the Lebesgue

constants for partitions with a set of d values are presented in Table 4.2. Among this set of d

values, it is interesting to note that the Lebesgue constant reaches a smallest value of 3.44485 at

d = 1/15 from a value of 8.21499 at d = 1/6. When d is smaller than 1/15, the Lebesgue constant

starts to increase. For presentation purpose, we call the partition shown in Figure 4a the Type 1

partition. The partition shown in Figure 4b with d = 1/6 is called the Type 2 partition, and with d

= 1/15 the Type 3 partition. It is expected that the Type 3 partition should give the most accurate

numerical solution in the uniform norm. The Lebesgue constant for the Type 1 partition is
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167/12 (13.9), which is significantly larger than those for the Type 2 and 3 partitions. Numerical

results to be presented later confirm that the Type 1 partition is not convergent with grid

refinement. Several of the cardinal basis functions for the Type 1 partition are plotted in Figure

8, and for the Type 3 partition are plotted in Figure 9. For a cubic reconstruction, still two Gauss

quadrature points are required for a surface integral. Again, due to the symmetry, we only need

to compute and store the cardinal basis functional values at 10 quadrature points, total of 100

coefficients.

5. Multi-Dimensional Limiters

The Gibbs phenomenon associated with high-order schemes in the presence of discontinuities

causes loss of monotonicity in the solution of hyperbolic conservation laws. Godunov [18] first

proved that there are no linear second or higher order schemes which guarantee monotonicity.

Therefore high-order monotonic schemes, if they exist, must be non-linear. One effective

approach to achieve monotonicity is to limit the reconstructed solution so that a monotonicity

constraint is satisfied. As pointed out by many researchers, strict monotonicity seems to conflict

with uniform high-order of accuracy [12]. In order to recover uniform order of accuracy away

from discontinuities, the TVB (total variation bounded) idea [33] is employed here.

We again consider a SV Si with N CVs. Given cell-averaged state variables for all the CVs {r/4 },

a polynomial reconstruction pi(x,y) of at most order k - I exists which satisfies:

Ip,(x,y)dV = _,4V_4, j = 1..... N. (5.1)
C,,j

Recall that this polynomial reconstruction is then used to compute the state variables at the CV

boundaries, which are, in turn, used in the update of the solution at the next time level:

d ,j 1
" +--_.,wroFR,,,,(p,(xro, yrq),p,.r(.,%, yr,,),nr)A_ =O. (5.2)

dt V,,j r=l q=l

Denote
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Algrq= Pi(Xrq , Yrq) -U-,..j, r = 1,.-., K; q = 1,-.., J.

Following the TVB idea, if

AU _o <_4MhTq, r = 1,...,K; q = 1,...,J, (5.3)

it is not necessary to do any data limiting. In (5.3), M represents some measure of the second

derivative of the solution, and h,.q is the distance from point (Xrq, Yrq) to the centroid of Cid. It is

obvious that this multi-dimensional TVB limiter degenerates into the one-dimensional TVB

limiter. Using the fact that in two dimensions, 4hrZq o_ Vi,j ' we can further simplify (5.3) by

replacing 4Mh2q with MVi, j . With the new formula, we do not need to compute or store the

distances from the cell centroid to the quadrature points. In this paper, we select M to be close to

the maximum absolute value of the second derivative over the computational domain. If for any

value of r and q, (5.3) is violated, it is assumed that Cij is near a steep gradient and data limiting

is necessary. Instead of using the polynomial Pi (x, y) in Ci.j, we assume that data is linear in Cid,

i.e,

u j (x, y) = u-,.j + Vu,,j • (r - r,.j ), Vr _ C,,j, (5.4)

where ri,j is the position vector of the centroid of Ci,j. In order to achieve the highest resolution,

we need to maximize the magnitude of the solution gradient Vlli, j in Ci d. At the same time, we

require that the reconstructed solutions at the quadrature points of Ci,j satisfy the following

monotonicity constraint:

--rain --max

lli,j _-_ Ui,j (Xrq' Yrq ) <- tti, j ' r = 1,--', K; q = 1,..., J, (5.5)

--rain --max

where ui,j and ui,j are the minimum and maximum ceil-averagedsolutionsamong allits

neighboringCVs sharinga facewith Ci,j,i.e.,

--max

ui4 = max(u-,j max,- . )
' ' l<r_K t,j,r

-_" = rain(i? j,minfi- ), (5.6)
lgt,j , l<_r<K t,j,r
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where ui,j,r denotes the cell-averaged solution at the neighboring CV of Cid sharing face r. If the

solution is linear, it is obvious that the solution value at the centroid of Cs.j is the same as u_,,],

the cell-average solution. Several different approaches are possible in estimating VUi, j

depending on the computational complexity. Three approaches are outlined here.

Approach 1:

Consider a CV with K faces. Using cell-averaged data at Cia and its neighbors, we can usually

construct K different gradients. For

(gi,j,u-i,j,r,U_.j,r+i) is denoted by Vlti,j, r

example, the gradient reconstructed from

with u--i,j,K+ 1 = tt_.,j,l. In addition, another gradient

can be constructed through a least squares reconstruction algorithm using the cell-averaged data

at all the face-neighbor cells. This gradient is denoted by _Ui,j,K+ 1 . Using any of the gradients,

the state variable at the quadrature points of Ci,j can be computed. If any of the reconstructed

variable at the quadrature points is out of the range [ ft.m4n _-.m.ax'4 ' z,j ], the gradient is limited, i.e.,

Vu,i,r ¢= (pVu,,j,r, (5.7)

where (0 _ [0, 1] is calculated from:

AUrq

Aurqmi 1, _ _ _-.m!n
ui,j t,]

1

} if AUrq > 0

if AUrq < O.

otherwise
(5.8)

After this limiting step, we have K+I gradients which all satisfy the monotonicity constraint

given in (5.5). Then the gradient with the largest magnitude is selected to maximize the gradient,

i.e.,

Vbti, j = mraX Vui,j, r • (5.9)
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This limiter is similar to the Maximum Limited Gradient(MLG) limiter developedby Batten,

LambertandCauson[7]. It wasprovenby Liu [26] thatthe abovelimiter satisfiesa maximum

principle for triangular grids. The MLG limiter is an analogof the Superbeelimiter in one

dimension.This limiter is thereforecalledSuperbeelimiter in this paper.This limiter hasthe

advantageof minimum numericaldissipation,but is expensiveto compute.A more efficient

limiter is givennext.

Approach 2:

Only onegradientis computed,i.e., VUi,j,K+ 1 given in Approach i, which is computed with data

at all face-neighbor cells using a least squares linear reconstruction algorithm. Again this

gradient is limited using (5.8) so that the reconstructed solutions at all the quadrature points

satisfy the monotonicity constraint (5.5). This limiter is similar to the minmod limiter in one

dimension, and is also called the Minmod limiter here.

Approach 3.

Note that in both approaches 1 and 2, the gradients of the solution for each CV must be

reconstructed using data in a neighborhood of the CV. This reconstruction can be quite memory

and CPU intensive. In this approach, we avoid a separate data reconstruction by reusing the

polynomial reconstruction already available for the SV. For each CV, we use the gradient of the

reconstructed polynomial at the CV centroid, i.e.,

OPm _P'_ I =( _ 0_ OP" Oil OP" O_ OP_ orl__-Ox ' Oy i)x 077 Ox' O_ Oy Orl c3y
r, I

For the transformation given in (3.10), it is obvious that

(5.10)

XlY2 -- x2Y l -- X 2 X 1 )
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Because

we thenhave

N

p,. (£j. r/) = E L; (_, r/) if,. i ,
j=l

@m r/) _ aLj _
j=l a¢ u.j

(5.12a)

_p_ (_, 7"/) _ _ OLj (_, r/) _
0r/ j=l Or/ u,.j.

(5.12b)

The first derivatives of the shape function can be obtained analytically. The gradient for each CV

is then limited if necessary with the same approach outlined in Approach 1. Obviously this is

most efficient among the three limiters. This limiter is named CV limiter.

For comparison purposes, we also used another simple limiter, which is called the Clip limiter.

In this limiter, zero gradient (piece-wise constant distribution) is used in CVs wherever limiting

is necessary.

Note that if parameter M = 0, the TVB limiters are similar to TVD (total variation diminishing)

limiters, which strictly enforce monotonicity by sacrificing accuracy near extrema.

The availability of cell-averaged data on the CVs inside a SV makes this CV-based data limiting

possible, whereas in the DG method, one can only do an element based data limiting. Due to the

increased local resolution, the SV method is expected to have higher resolutions for

discontinuities than the DG method. The improved resolution has been demonstrated in one

dimension [38].
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6. Numerical Tests

1. Accuracy Study with 2D Linear Wave Equation

Time Accurate Problem

In this case, we test the accuracy of the SV method on the two-dimensional linear equation:

0u Ou _u
--+--+--=0, -l<x<l, -1_< y <1,
Ot Ox Oy (6.1)

u(x, y,O) = u o (x, y), periodic boundary condition.

The initial condition is Uo(x,y)=sinrc(x+y). A fourth-order accurate Gauss quadrature

formula [28] is used to compute the CV-averaged initial solutions. These CV-averaged solutions

are then updated at each time step using the third-order TVD Runge-Kutta scheme presented

earlier. The numerical simulation is carried until t = 1 on two different triangular grids as shown

in Figure 10. One gird is generated from a uniform Cartesian grid by cutting each Cartesian cell

into two triangles, and is named the regular grid. The other grid is generated with an unstructured

grid generator, and is named the irregular grid. The finer irregular grids are generated recursively

by cutting each coarser grid cell into four finer grid cells. Note that the cells in the irregular grid

have quite different sizes. In Table 6.1, we present the L l and L= errors in the CV-averaged

solutions produced using second to fourth order SV method schemes with SVs shown in Figures

2-4 on the regular grid. The errors presented in the table are time-step independent because the

time step At was made small enough so that the errors are dominated by the spatial

discretization. In this test, all SVs except the Type 1 cubic SV (shown in Figure 4a) are

convergent with grid refinement on this regular grid. It is obvious that the expected order of

accuracy is achieved by all the convergent SVs. It is not surprising that the Type 1 cubic SV is not

convergent because of its rather large Lebesgue constant of 13.9. In contrast, the Type 2 and 3

cubic SVs have Lebesgue constants of 8.21 and 3.44 respectively. It is interesting to note that the

Type 1 linear SV gives more accurate results in both the Lz and L_ norms than the Type 2 linear

SV even if the Type 1 SV has a larger Lebesgue constant of 4.33 versus that of 2.87, of the Type

2 SV. This indicates that the Lebesgue constant cannot serve as an absolute error estimate, but

rather an estimate of the upper bound of the error. For the quadratic and cubic SVs, the partitions

with smaller Lebesgue constants do give more accurate numerical solutions, as shown in Table

6.1.
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Next, the L 1 and Loo errors in the numerical results computed on the irregular grid using second-

fourth order SVs are shown in Table 6.2. This should be a much tougher test case because of the

truly unstructured nature of the computational grid. What is striking is that the Type 1 linear SV

failed to achieve second-order accuracy on this grid. As a matter of fact, it is only first order

accurate. This may be contributed to the acute angles of the CVs in the partition. Note that both

quadratic SVs are convergent, and give similar results. Third order accuracy is achieved by both

types of quadratic SVs in the L l norm although the numerical order of accuracy in the Loo norm

is only slightly over second-order. We believe this is due to the non-smoothness of the

computational grid. As expected, the Type 1 cubic SV is not convergent on this grid. In addition,

the Type 2 cubic SV also showed a non-convergent behavior in the L_ norm on the finest grid. It

is nice to see that the Type 3 cubic SV is not only convergent, but also fourth-order accurate in

both the L l and L_o norms.

Steady State Problem

One steady state solution for the wave equation (6.1) is u(x, y) = sin _(x- y). In order to test the

performance of the SV method for steady-state problems, the steady boundary value problem is

also studied. Because the wave is traveling in positive x and y directions, inflow boundary

conditions are employed at y = -1 and x = -1, while extrapolation boundary conditions are used

at x = 1 and y = 1. On the inflow boundaries, the exact solutions at the quadrature points are

used to evaluate the flux integrals. The simulation is carried out on the irregular grid until a

steady-state is reached. In all the simulations, the residuals were reduced to machine zero. In

Table 6.3, the L l and L_o errors are presented for second to fourth-order schemes. It is surprising

to see that the Type I linear SV gives a more accurate solution in both norms than the Type 2

linear SV on this irregular grid. Recall that in the time accurate simulation presented earlier on

this irregular grid, the Type I linear SV failed to achieve second-order accuracy. This may

indicate that there is significant error accumulation in the time accurate simulation with the Type

1 linear SV. Other than that, there are no major surprises. Both quadratic SVs gave reasonable

results, while the Type 1 and Type 2 cubic SVs showed convergence problems on the finest
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mesh. Once again, the performance of the Type 3 cubic SV is excellent. It is convergent, and

achieves fourth-order accuracy in both norms.

2. Accuracy Study with 2D Burgers Equation

In this case, we test the accuracy of the SV method on the two-dimensional non-linear wave

equation:

Ou 0u2/2 0u2/2
--+--d -0,
Ot Ox by

1 1
u(x, y,0) = -- + --sin 7c(x + y),

4 2

-l_<x<l, -l<y<l,

periodic boundary condition.

(6.2)

The initial solution is smooth. Due to the non-linearity of the Burgers equation, discontinuities

will develop in the solution. Therefore we also test the capability of the SV method to achieve

uniform high-order accuracy away from discontinuities. At t = 0.1, the exact solution is still

smooth, as shown in Figure 1 la. The numerical simulation is therefore carried out until t = 0.1

without the use of limiters on both the regular and irregular grids as shown in Figure 10. The

numerical solution on the 20x20x2 irregular grid computed with the Type 1 quadratic SV (third-

order accurate) is displayed in Figure lib. Notice that the visual agreement between the

numerical and exact solutions is excellent. In Table 6.4, we present the L l and L= errors

produced using various SVs on the regular grid, while in Table 6.5 the errors on the irregular

grids are presented. The Type I cubic SV is now excluded because it is non-convergent on any

grids. The performance of the SV method on the non-linear Burgers equation is quite similar to

the performance on the linear wave equation, although there is a slight loss of accuracy (from 0.1

- 0.6 orders) especially on the irregular grid in the L_ norm, probably due to the non-linear

nature of the Burgers equation. Once again, the Type 1 linear SV has difficulty in achieving

second-order accuracy on the irregular grid in both norms.

At t = 0.45, the exact solution has developed two shock waves as shown in Figure 12a. Limiters

are necessary to handle the discontinuities. All the limiters (Clip, CV, Superbee and Minmod

limiters) are evaluated. Shown in Figure 12 are the exact solution, and the computed numerical

solutions with the Type 2 quadratic SV (third order accurate) on the 40x40x2 irregular grid using
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all limiters with M = 0, i.e., TVD limiters. The useof M = 0 was designed to highlight the

differences between the limiters. Note that all the TVD limiters gave reasonable solutions

including the Clip limiter. In term of shock resolution, the Clip Limiter is the most dissipative,

followed by the CV Limiter. The Minmod and Superbee Limiters gave the best solutions, which

are difficult to distinguish from each other. Figure 13 displays the solutions with the same grid

and SV scheme with M = 400, i.e., TVB limiters. The most striking difference between the

results shown in Figure 12 and 13 is that the solutions away from the shock waves are much

smoother with the TVB limiters than with the TVD limiters, This indicates that high-order

accuracy is achieved away from the discontinuities with the TVB limiters. However, the price

one must pay to achieve this is that some oscillations near the shock waves must be tolerated, as

shown in Figure 13.

In order to estimate the numerical order of accuracy for the solution away from the

discontinuities, L 1 and L_o errors in the smooth region [-0.2, 0.4]x[-0.2, 0.4] are computed.

Computations were carried out on the irregular grid only with the Minmod limiter. Without the

use of the limiter, the solution quickly diverged after shock waves were developed in the

solution. The parameter M was set to be 400 in the computation. If M is too small, the accuracy

in the smooth region is degraded probably because limiting was carried out in the smooth region

as well as near the shock. The L 1 and Loo errors with one type of SV for a given order of

accuracy are presented in Table 6.6. Obviously, with this choice of M, the designed order of

accuracy was achieved away from discontinuities.

7. Conclusions

The Spectral Volume method [38] has been successfully extended to two-dimensional scalar

conservation laws using unstructured triangular meshes. Each mesh cell forms a spectral volume,
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and the spectral volume is further partitioned into polygonal control volumes. High order

schemesare then built based on the CV-averagedsolutions. It is shown that a universal

reconstructioncan be obtainedif all spectralvolumes are partitioned in a similar manner.

However,asin theone-dimensionalcase,the way in which a SV is partitioned into CVs affects

the convergence property of the resultant numerical scheme. A criterion based on the Lebesgue

constant has been developed and used successfully to determine the quality of various partitions.

Symmetric, stable, and convergent linear, quadratic and cubic SVs have been obtained, and many

different types of partitions are evaluated based on the Lebesgue constants and their performance

on model test problems.

Accuracy studies with 2D linear and non-linear scalar conservation laws have been carried out,

and the order of accuracy claim has been numerically verified on both smooth and non-smooth

triangular grids for convergent SVs. Several TVD and TVB limiters have been developed for

non-oscillatory capturing of discontinuities, and found to perform well. The TVB limiters with a

properly selected parameter (M) are capable of maintaining uniformly high-order accuracy away

from discontinuities. The extension of the method to one and two dimensional hyperbolic

systems is under way, and will be reported in future publications.
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Table 4.1 Solutions of (4.1) for m = 1, ..., 5

ITI n6

1 0

0

4

n_ n3

0 1

0 2

0 0

1 3

1 1

0 5

0 3

0 1

0 7

0 5

0 3

0 1

1

2

0

1

2

3

Table 4.2 Lebesgue Constants for the Partition Shown in 3b

b Lebesgue constant

1/6 8.21499

1/7 6.71178

1/8 5.71904

1/10 4.49231

1/15 3.44485

1/20 3.57595

1/25 3.65981

1/100 3.93353
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Table 6.1. Accuracy on 11t + 1¢x + lly = O, with u o (x, y) = sin rc(x + y), at t = 1 (regular grids)

Order of Accuracy

2

(Type 1 SV)

2

(Type 2 SV)

3

(Type 1, d = 1/3)

Grid

10x10x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

Ll error

3.04e-2

7.68e-3

L 1 order

1.9"8

1.92e-3 2.00

4.81e-4 2.00

1.20e-4 2.00

4.03e-2

L_ error L= or_r

4.97e-2

1.24e-2

3.10e-3

7.75e-4

1.93e-4

6.68e-2

20x20x2 1.06e-2 1.93 1.78e-2

40x40x2 2.71e-3 1.97 4.54e-3

80xS0x2 6.83e-4 1.99 1.14e-3

160x160x2 1.71e-4 2.00

2.97

10xl0x2

2.99

20x20x2

4.18e-3

5.33e-4

1.06e-6

2.87e-4

160x160x2

7.76e-3

1.01e-3

2.00

2.oo
2.00

1.93e-6

2.00

1.91

1.97

1.99

! .99

2.94

3.0140x40x2 6.73e-5 2.99 1.25e-4

80xS0x2 8.45e-6 2.99 1.55e-5 3.01

3.00

10xl0x2 4.73e-3 7.88e-3

20x20x2 4.77e-4 3.31 9.83e-4 3.00

3 40x40x2 6.04e-5 2.98 1.23e-4 3.00

(Type 2, d = 1/4) 80x80x2 7.58e-6 2.99 1.53e-5 3.01

160x160x2 9.57e-7 2.99 1.91e-6 3.00

4

(Type 1 SV)

4.00

3.98

3.98

Negative

3.99

3.99

4.00

lOxlOx2

4

(Type 2, d = 1/6)

1.38e-4

8.64e-620x20x2

40x40x2 5.47e-7

80x80x2 3.46e-8

4.00

160x160x2

10xl0x2

20x20x2

40x40x2

80xS0x2

160x160x2

10xl0x2

20x20x2

40x40x2

80xS0x2

4.19e-8

4.86e-4

1.98e-5 4.62

1.5Ie-6 3.71

1.17e-7

5.15e-7

3.69

Negative

3.17e-4

1.94e-5 4.03

1.24e-6 3.95

7.78e-8 3.99

4.84e-9

9.33e-5

160x160x2

5.86e-6

3.70e-7

2.32e-8

1.45e-9

7.36e-5

4

(Type 3, d = 1/15)

2.51e-4

4.52e-6 4.03 1.61e-5

2.81e-7 4.01 1.01e-6

1.75e-8 4.01 6.30e-8

1.10e-9 3.99 3.94e-9

4.01

3.96

3.99

4.00

4.01
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Table 6.2. Accuracy on u, + u x + u s = O, with uo(x, y) = sin rr(x + y), at t = 1 (irregular grids)

Order of Accuracy

2

(Type 1 SV)

2

(Type 2 SV)

3

(Type 1, d = 1/3)

3

(Type 2, d = 1/4)

4

(Type 1 SV)

4

(Type 2, d = 1/6)

4

(Type 3, d = 1/15)

Grid

lOxlOx2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

L 1 error L 1 order L_ error

1.30e-1 3.60e- 1

6.66e-2 0.96 1.91e-1

3.51e-2 0.92

1.85e-2

9.74e-3

6.71e-2

20x20x2 1.83e-2

40x40x2 4.71e-3

80xS0x2 1.19e-3

160x160x2 3.00e-4

10xl0x2 9.17e-3

20x20x2 1.25e-3

40x40x2 1.64e-4

0.92

0.93

1.87

1.96

1.98

1.99

2.87

9.84e-2

4.91e-2

2.86e-2

L_ order

0.91

0.96

1.00

0.78

1.36e-1

4.42e-2 1.62

1.15e-2 1.94

2.94e-3 1.97

8.85e-4

3.67e-2

5.28e-3

2.93 8.32e-4

80x80x2 2.15e-5 2.93 1.84e-4

160x160x2 2.79e-6 2.95 4.05e-5

3.76e-28.36e-310xl0x2

20x20x2 1.15e-3 2.86 5.63e-3

40x40x2 1.52e-4 2.92 1.OOe-3

80x80x2 2.01e-5 2.92 2.14e-4

1.73

2.80

2.67

2.18

2.18

2.74

2.49

2.22

160x180x2 2.64e-6 2.93 5.31e-5 2.01

lOxlOx2 4.43e-4 - 3.32e-3

20x20x2 3.08e-5 3.85 3.70

2.15e-640x40x2

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

2.48e-7

2.56e-4

2.12e-5

5.06e-6

4.49e-55.19e-7

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

3.84

3.12

Negative

3.04e-4 2.58e-3

2.02e-5 3.91 1.73e-4

1.34e-6 3.91 1.42e- 5

9.61e-8 3.80 1.03e-6

2.30e-8 2.06 1.23e-6

2.71e-4 1.51e-3

1.61e-5 4.07 1.14e-4

4.02 8.28e-6

5.40e-7

3.79e-8

9.91e-7

6.17e-8

3.87e-9

4.01

3.99

3.59

2.07

Negative

3.90

3.61

3.79

Negative

3.73

3.78

3.94

3.83
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Table 6.3. Accuracy on u x + Uy = 0, with u(x, y) = sin rc(x - y) (irregular grids)

Order of Accuracy

2

(Type 1 SV)

2

(Type 2 SV)

3

(Type 1, d = 1/3)

Grid

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

LI error

8.91e-3

2.26e-3

L 1 order

1.98

5.78e-4 1.97

1.48e-4 1.97

3.77e-5 1.97

L_ error L_ order

4.65e-2

1.27e-2

3.37e-3

9.03e-4

2.37e-4

1.57e-2 6.58e-2

1.99 2.14e-23.94e-3

9.99e-4

2.52e-4

6.32e-5

1.51e-3

1.99 5.58e-3

1.99 1.47e-3

1.87

1.91

1.90

1.93

1.62

1.94

20x20x2 2.20e-4

40x40x2 3.07e-5

4.08e-680x80x2

160x160x2 5.24e-7

1.92

2.00 3.83-4 1.94

- 1.33e-2

2.78 1.82e-3 2.87

2.84 2.64e-4 2.75

2.91 3.93e-5 2.75

5.25e-62.96 2.90

10xl0x2 1.48e-3 1.26e-2 -

3 20x20x2 2.11e-4 2.81 1.72e-3 2.87

(Type 2, d = 1/4) 40x40x2 2.88e-5 2.87 2.71e-4 2.67

80xS0x2 3.76e-6 2.94 3.83e-5 2.82

3.00

3.74

4.01

3.83

2.99

3.87

4

(Type 1 SV)

4

(Type 2, d = 1/6)

4.69e-7

4.01

9.11e-5

160x160x2

lOxlOx2

20x20x2 6.80e-6

40x40x2 4.21e-7

80x80x2 2.97e-8

5.11e-6

160x160x2

1.28e-3

2.91

1.26e-3

4

(Type 3, d = 1/15)

1.04e-4 3.62

7.60e-6 3.77

8.75e-7 3.12

7.21e-7 0.28

1.02e-4

7.36e-6

4.83e-7

3.73e-9

10x10x2 9.27e-5

20x20x2 6.34e-6

40x40x2 3.93e-7

2.56e-8 3.94

1.76e-9 3.86 6.25e-8

1.59e-4 9.21e-4

9.98e-6 3.99 9.12e-5

6.26e-7 3.99 6.58e-6

4.49e-73.75e-8

2.26e-9

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

4.06

4.05 2.68e-8

3.63

3.79

3.93

2.95

3.34

3,79

3.87

4.07
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Table 6.4.
1 1

. = =-+--sinrc(x + y), att =0.1 withAccuracyon u r + uur + UUy 0, withu0(x,y ) 4 2

regular grid

Order of Accuracy

2

(Type I SV)

2

(Type 2 SV)

3

(Type 1, d = 1/3)

3

(Type 2, d = 1/4)

Grid

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

80xS0x2

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

20x20x2

El error

2.05e-3

5.31e-4

1.42e-4

L 1 order

1.95

1.90

L_ error L_ order

7.2oe-3

2.17e-3

6.63e-4

3.79e-5 1.91 1.96e-4

1.03e-5 1.88 5.86e-5

3.35e-3

8.07e-4

2.01e-4

5.06e-5

2.05

2.01

1.99

1.99

2.51

2.59

2.64

1.27e-5

4.44e-4

7.81e-5

1.30e-5

2.0%-6

1.18e-2

3.82e-3

1.02e-3

1.73

1.71

1.76

i .74

1.63

i.91

2.64e-4 1.95

1.986.71e-5

1.93e-3

4.29e-4 2.17

8.84e-5 2.28

1.51e-5 2.55

3.24e-7 2.69 2.57e-6 2.55

4.31e-4 1.91e-3 -

7.44e-5 2.53

40x40x2 1.23e-5

80xS0x2 1.96e-6

160x160x2 3.00e-7

10xl0x2 3.26e-5

20x20x2 2.22e-6

2.60

2.65

2'.71

3.88

3.81

4.22e-4 2.18

7.93e-5 2.41

1.45e-5 2.45

2.42e-6 2.58

2.40e-4

2.15e-5 3.48

(Type 2, d = 1/6) 40x40x2 1.58e-7
80x80x2 1.02e-8

160x160x2 6.54e-10

1.74e-6

3.95 1.18e-7

3.96 7.68e-9

4.10e-5 3.12e-4

2.69e-6 3.93 2.82e-5

1.85e-7 3.86 2.23e-6

1.24e-8 3.90 1.60e-7

4

(Type 3, d = 1/15)

3.63

3.88

3.94

3.47

3.66

3.80

10xl0x2

20x20x2

40x40x2

80xg0x2

160x160x2 8.21e-10 3.92 1.0%-8 3.88
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Table6.5.
1 1

= =- +-sinrc(x + y),att =0.1Accuracy on u t+uu x+uuy 0, with uo(x, y) 4 2

with irregular grid

Order of Accuracy

2

(Type 1 SV)

2

(Type 2 SV)

3

(Type 1, d = 1/3)

3

(Type 2, d -- 1/4)

4

(Type 2, d = 1/6)

4

(Type 3, d = 1/15)

Grid

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

80x80x2

160x160x2

10xl0x2

4 error

5.82e-4

2.42e-4

L 1 order

1.49

L_ error L_ order

4.32e-2

2.34e-2

1.38 1.22e-2

1.27 6.0%-3

1.06e-4 1.19

5.79e-3

1.46e-3 1.99

3.67e-4 1.99

9.40e-5 1.97

2.39e-5 1.98

6.37e-4

2.99e-3

2.96e-2

9.15e-3

2.87e-3

8.78e-4

0.88

0.94

1.00

1.03

1.69

1.67

1.71

3.54e-4 1.31

4.71e-3

20x20x2 1.21e-4 2.40 1.26e-3 1.90

40x40x2 2.02e-5 2.58 3.52e-4 1.84

80x80x2 3.22e-6 2.65 8.21e-5 2.10

160x160x2 5.02e-7 2.68 1.66e-5 2.31

6.28e-410xl0x2

20x20x2 1.17e-4 2.42

40x40x2 1.91e-5 2.61

3.01e-6 2.67

4.63e-7 2.70

80x80x2

160x160x2

10xl0x2

20x20x2

40x40x2

7.87e-5

6.07e-6

4.55e-7

3.70

3.74

3.93e-3

1.0%-3 1.85

3.05e-4 1.84

7.16e-5 2.09

1.43e-5 2.32

1.02e-3

1.00e-4 3.35

9.62e-6 3.38

80x80x2 3.44e-8

160x160x2 2.79e-9

10xl0x2

20x20x2

40x40x2 5.20e-7

9.71e-5

7.17e26

3.73 8.55e-7

3.62 8.75e-8

1.29e-3

3.76 1.24e-4

3.79 1.07e-5

3.793.79e-8 9.34e-7

8.34e-82.88e-9 3.72

80x80x2

160x160x2

3.49

3.29

3.38

3.53

3.52

3.49
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Table6.6.
I 1

= = -- + --sin Jr(x + y), at t = 0.45
Accuracy on u t + Ult x + Ully O, with Uo(X, y) 4 2

in [-0.2, 0.4]x[-0.2, 0.4] on irregular grid, Minmod Limiter with M = 400

Order of Accuracy Grid L1 error

10xl0x2 1.68e-4

2

(Type 2 SV)
20x20x2

40x40x2

80x80x2

160x160x2

3.92e-5

9.66e-6

2.43e-6

6.01e-7

L! order L_ error

5.33e-3

2.10

2.02

1.65e-3

4.83e-4

1.58e-4

3.49e-5

L_ order

1.69

1.77

1.61

2.18

10xl0x2 6.23e-5 - 6.57e-3 -

20x20x2 6.25e-6 3.32 5.86e-4 3.49
3

(Type 2 SV) 40x40x2 6.06e-7 3.37 7.21e-5 3.02
80x80x2 7.40e-8 3.03 1.29e-5 2.48

160x160x2 9.47e-9 2.97 2.68e-6 2.27

10xl0x2 7.81e-5 4.39e-2

20x20x2 6.78e-7 6.85 1.31e-3 5.07

40x40x2 6.38e-9

80x80x2 3.85e-10

160x160x2 2.84e-li

4

(Type 3 SV)
2.97e-66.73

4.05 6.65e-8

3.76 4.36e-9

8.78

5.48

3.93
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(a)

(b)

Figure 1. (a) A possible reconstruction stencil for a quadratic reconstruction in a high-order k-
exact finite volume scheme; (b) The partition of a Spectral Volume into six Control Volumes

supporting a quadratic reconstruction
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(a)Type 1,nl = 0, n3= I, n6 = 0

Figure 2.

(b) Type 2, nl = 0, n3 = 1, n6 = 0

Control Volumes in a Triangular Linear Spectral Volume (a) Type 1; (b) Type 2.
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(a) Type 1 with d = 1/3 and Type 2 with d = 1/4

nl =0, n3 =2, n6 =0

(b) A Singular Partition

nl =0, n3 =O, n6 = I

Figure 3. Possible Triangular Quadratic Spectral Volume Partitions
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(a) Typel, nj= 1,n3=l;n6=l

(b) Type2 with d = 1/6andType 3 with d = 1/15

nl = 1, n3= 1, n6= 1

(c) nl= l,n3= 1,n6 = 1

(d) n l = 1, n3 = 3, n6 = 0

Figure 4. Possible Cubic Triangular Spectral Volumes
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(a)

2 ii

0 i
1

(b)

Figure 5. The Schematic of the mapping from the physical triangle to the standard triangle
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4

(a) Type 1

Figure 6.

(b) Type 2

Shape Functions for Linear Spectral Volumes
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#

(a)

(b)

Figure 7. Shape Functions for the Type 2 Quadratic Spectral Volume
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4

Figure 8. Shape Functions for the Type 1 Cubic Spectral Volume
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0
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4 0

Figure 9. Shape Functions for the Type 3 Cubic Spectral Volume

46



\\, \ '\

\ ",,

"\\ "\

\\"-% '

\', Z

(a)

(b)

Figure 10. Regular and Irregular "10xl0x2" Computational Grids
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(a) Exact Solution at t = 0.1
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(b) Numerical Solution on the 20x20x2 Irregular Grid Using the Type 1 Quadratic SV

Figure 11. Exact and Computational Solutions of the Burgers Equation at t = 0.1
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b-_5",,, ",2_e_-. , -. '. ",d

(b) Clip Limiter

i _'- _,. ". ", \, - ", _ \ I

(c) CV Limiter (d) Minmod Limiter

(e) Superbee Limiter

Figure 12. Exact and Computational Solutions of the Burgers Equation at t = 0.45 on the

40x40x2 Irregular Grid Using the Type 2 Quadratic SV (Third-Order Accurate), M = 0
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(e)SuperbeeLimiter
Figure13.ExactandComputationalSolutionsof theBurgersEquationatt = 0.45onthe
40x40x2IrregularGridUsingtheType2 QuadraticSV (Third-Order Accurate), M = 400
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